For hvilke fartøygrupper er LNG aktuelt?

- Teknologisk status og kritiske faktorer
- Dual fuel eller ren gass fordeler og ulemper

MARINTEK

Harald Ellingsen, professor NTNU

Teknologikonferanse 2011 Gass som energibærer i fiskeflåten 13. Oktober 2011, hotell Radisson BLU, Ålesund

Presentation outline

Background

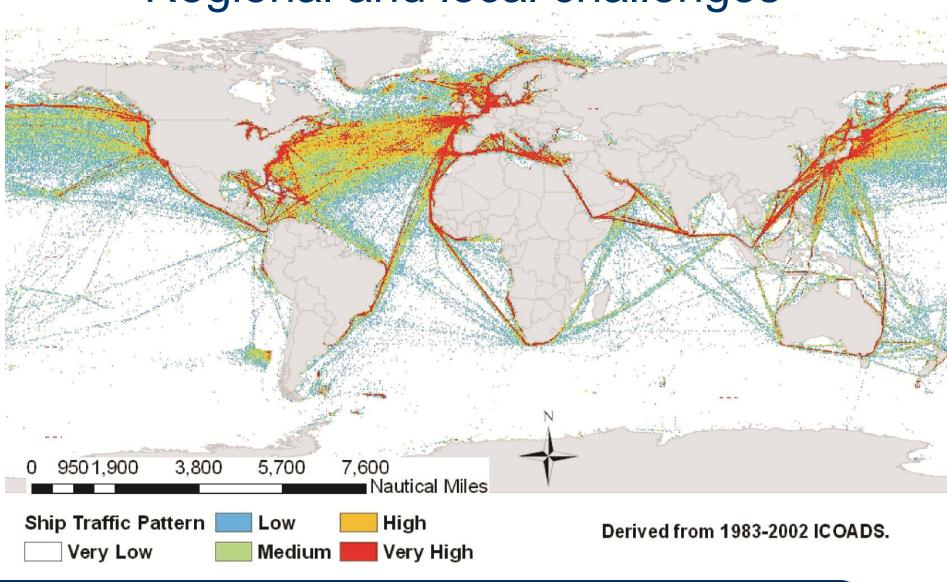
- Environmental challenges and emission restrictions at sea
- Need for alternative fuels (to replace HFO)
- Natural Gas fueled marine engines
- LNG as a solution to environmental challenges in shipping
- Propulsion systems and onboard LNG fuel systems
- Safety rules and regulations
- Bunkering fuel supply infrastructure
- R&D Challenges

MARINTEK

Summary and conclusions

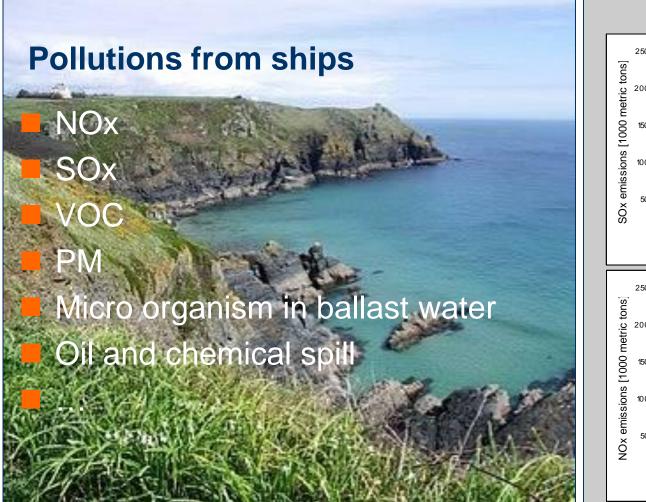
Presentation outline

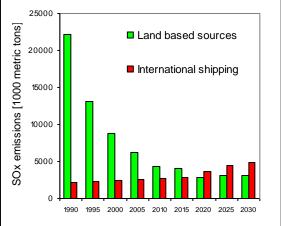
Background

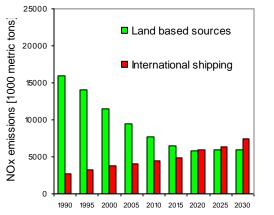

- Environmental challenges and emission restrictions at sea
- Need for alternative fuels (to replace HFO)
- Natural Gas fueled marine engines
- LNG as a solution to environmental challenges in shipping
- Propulsion systems and onboard LNG fuel systems
- Safety rules and regulations
- Bunkering fuel supply infrastructure
- R&D Challenges

MARINTEK

Summary and conclusions


Global shipping – Regional and local challenges


MARINTEK


🕥 SINTEF

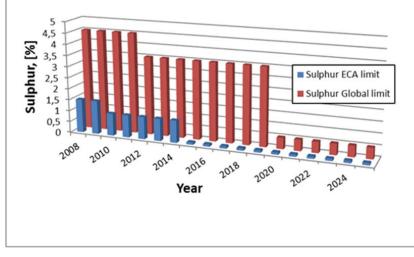
Harmful emissions

Prognoses from EC

Harmful emissions to air is a major challenge

New stricter limitation on sulphur and NOx agreed in IMO

Emission Control Areas (ECA)



LNG - Importing an energy source and a new fuel for shipping in Northern Europe 12 January 2011 © Det Norske Veritas AS. All rights reserved.

IMO MARPOL Annex VI - SOx emission limits

Stricter IMO limitation on SOx

*(SECA=ECA)

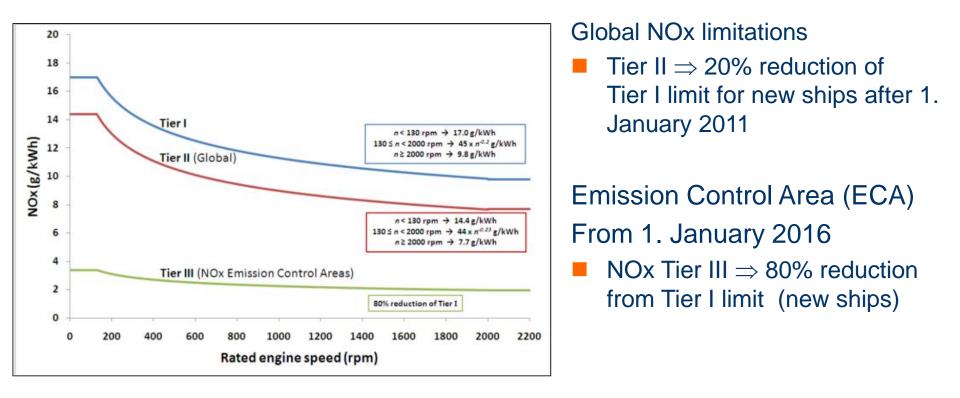
MARINTEK

IMO Sulphur Limits

Global sulphur limitations

- Global cap from 4,5% to 3,5% effective from 1. January 2012
- Global cap from 3,5% to 0,5% effective from 1. January 2020

SECA (Sulphur Emission Control Area) limitations*

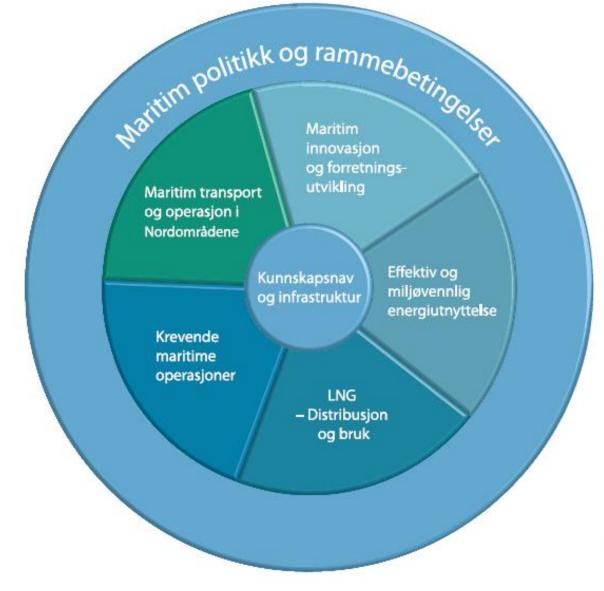

- New sulphur limit from 1,5% to 1,0 % effective from 1. March 2010
- New sulphur limit from 1,0% to 0,1 % effective from 1. January 2015

PM (Particulate Matter) regulated indirectly by the sulphur reduction

IMO requirements to prevent pollution from ships

IMO MARPOL Annex VI - NOx emission limits

En helhetlig maritim forsknings- og innovasjonsstrategi for det 21. århundre



Prioriterte innsatsområder

LNG – distribusjon og bruk

Mål for 2020

- **30 % av norsk nærskipsflåte er gassdrevet**
- Kompetanse og erfaring på LNG utvikling, drift og distribusjon som egen eksportvare

Anbefalinger

- Aktiv formidling og økt allmennkunnskap om LNG
- Identifisere markeder som er best egnet til LNG som drivstoff.
- Påvirke internasjonalt regelverk som ivaretar sikkerhet og miljø
- Spesifikt forskningsprogram innen LNG som drivstoff:

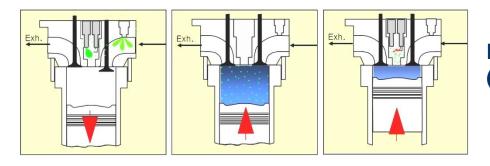
LNG – distribusjon og bruk

Forskningsområder

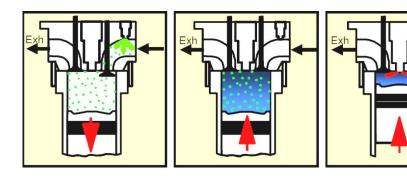
- LNG hoved- og hjelpemaskineri
- LNG bunkringssystem, også skip-skip
- Lagring av LNG ombord på skip
- Transport og distribusjon av LNG
- Storskala demonstrasjonsprosjekt som dekker hele LNG kjeden

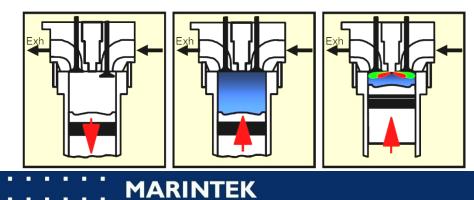
Presentation outline

Background


- Environmental challenges and emission restrictions at sea
- Need for alternative fuels (to replace HFO)
- Natural Gas fueled marine engines
- LNG as a solution to environmental challenges in shipping
- Propulsion systems and onboard LNG fuel systems
- Safety rules and regulations
- Bunkering fuel supply infrastructure
- R&D Challenges

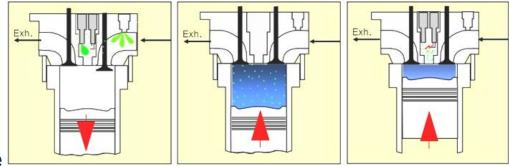
MARINTEK


Summary and conclusions


Gas fuelled marine engine concepts

LEAN BURN SPARK IGNITED ENGINE (LBSI)

DUAL FUEL GAS ENGINE (DF) – PILOT DIESEL IGNITION



High pressure gas injection -"Gas Diesel engine" –(GD)

Spark Ignited Lean Burn gas engine (LBSI)

- Single fuel LNG, low pressure gas supply (4-5 bar)
- High energy efficiency at high load, higher than the corresponding diesel engine
- Low emissions, meets IMO tire III
- GHG reduction potential in the range of 20-25% ref. to HFO (incl. methane)
- Challenge on methane slip, minimized by design and combustion process control
- Sensitive to gas quality (Methane Number)
- Not suitable for retrofit of existing engines

Operating characteristics (Lean Burn gas engine)

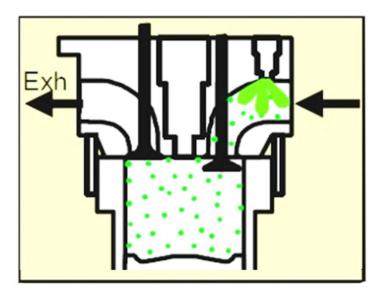
- S. I. lean-burn gas engines can take load pick up in the same range as the diesel engine counterpart
- The S.I. Lean-burn gas engines can run with fixed speed or variable speed, meaning generator load or propeller load.
- The energy efficiency can be in the same range as the diesel engine counterpart at the same time as the emissions (NOx) are kept low over the whole load range

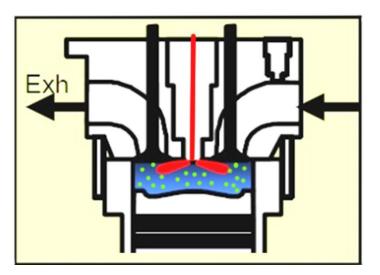
"Bergensfjord" In service January 2007

BERGENSFJORD

HU-ALI

BERGEN


#


Dual-Fuel engine (DF)

- Dual fuel capability (NG or MDO)
- Low gas pressure supply (4-5 bar)
- High energy efficiency at high load
- Low emissions, meets IMO tire III
- Flexibility in fuel mix
- GHG reduction potential in the range of 20-25% ref. to HFO (reduction is dependent on level of methane slip)
- Challenge on methane slip, limited possibility to combustion process control
- Sensitive to gas quality (Methane Number)
- Possible for conversion of existing engines (extensive rebuilding)

Wärtsilä 6L50DF

Micro Pilot Dual Fuel concept Ship application

Flexibility in fuel

- Diesel oil as back up fuel in natural gas operation
- Switch to pure diesel oil operation at low load (switch point: 15% engine load)
- Manoeuvring in diesel oil mode

Gas fuelled ships (LNG)

Presentation outline

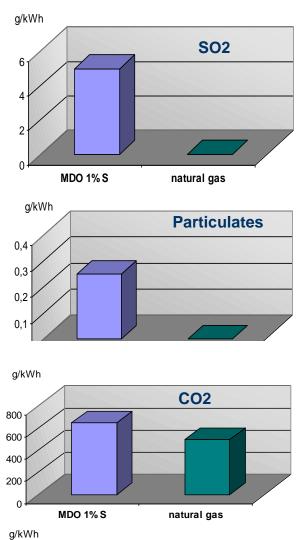
Background

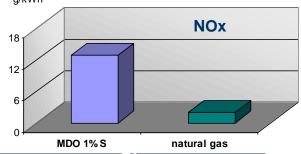
- Environmental challenges and emission restrictions at sea
- Need for alternative fuels (to replace HFO)
- Natural Gas fueled marine engines
 - LNG as a solution to environmental challenges in shipping
- Propulsion systems and onboard LNG fuel systems
- Safety rules and regulations
- Bunkering fuel supply infrastructure
- R&D Challenges

MARINTEK

Summary and conclusions

Exhaust emission -Natural gas vs MDO


Sulphur emission is eliminated


Particulate matters is close to zero

CO2 is reduced by 26% Due to unburned methane the net reduction of greenhouse gases are in the range of 0% -15% for sailing ships today

NOx is reduced by 80-90%

Source: Rolls-Royce Marine

Climate impact, methane slip

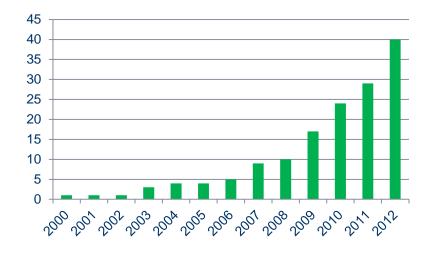
- Lean burn gas engines emit un-burned hydrocarbons (methane) from the engine exhaust which is a GHG
- This is related to low flame temperatures when burning a lean gas/air mixture, which keeps NOx emissions low but tends to create quenching zones. Un-combusted gas from these quenching zones ends up as hydrocarbons (mainly methane) in the exhaust.
 - Net GHG reduction potential with best available technology is 15-20% with LNG versus MDO operation, (including CO2 and methane).

Presentation outline

- Background
 - Environmental challenges and emission restrictions at sea
 - Need for alternative fuels (to replace HFO)
- Natural Gas fueled marine engines
- LNG as a solution to environmental challenges in shipping
- Propulsion systems and onboard LNG fuel systems
- Safety rules and regulations
- Bunkering fuel supply infrastructure
- R&D Challenges

MARINTEK

Summary and conclusions

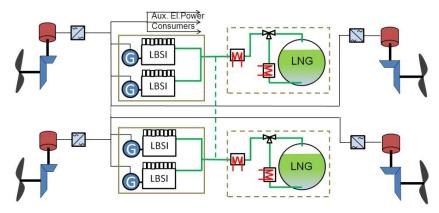

LNG powered ship design

26 LNG propelled ships in operation:

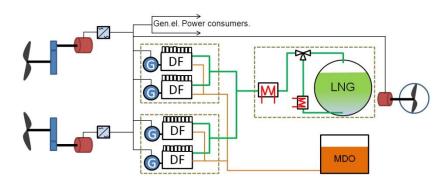
- Ferries (15)
- Offshore support vessels (5)
- Coast guard vessels (3)
- Product tanker (1)
- LNG tanker (2)

15 LNG propelled ships under construction

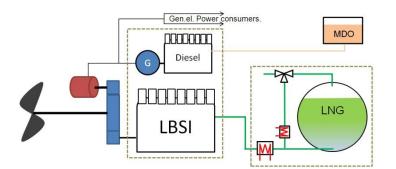
More than 40 LNG fuelled ships by 2012



Fiskefartøy på forprosjektstadiet


- Flere prosjekt 2005-2006 (Innovasjon Norge, FHF, Forskningsrådet)
 - Skipsteknisk
 - Wärtsilä
 - GasNor
 - Lie-gruppen
 - Ivan Ulsund
 - Midøy Fiskeriselskap
 - Roaldsnes
 - SB Verksted

- SINTEF Fiskeri og havbruk/MARINTEK
- Søknad om nye prosjekt hos NOx-fondet i dag


Propulsion system arrangements and fuel systems

Electric drive vs mechanical drive

All the LNG fuelled ships in operation are using electric drive

Development or adaptation of mechanical drive for ship application is a necessity for a cost efficient solution

Impact on ship design

- Fuel storage and distribution
- Fuel bunkering and operational issues
- Machinery systems and arrangement
- Rules and regulations and safety issues

Impact on ship design, cont.

Fuel storage and distribution, fuel bunkering

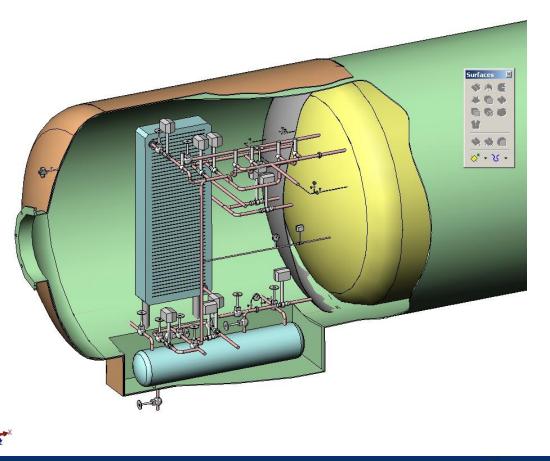
Gas storage tank and piping according to IMO guidelines for gas fuelled ships, and classification rules

The LNG Fuel System includes:

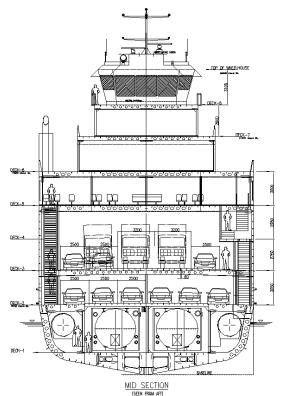
- One or two LNG Fuel Tanks.
- A Vaporizer unit for vaporization of the LNG to gaseous natural gas.
- A Pressure build up unit for regulation of tank pressure.
- Bunker station with filling and vapour return connection.

MARINTEK

Piping for bunkering and delivery of natural gas to the engines.

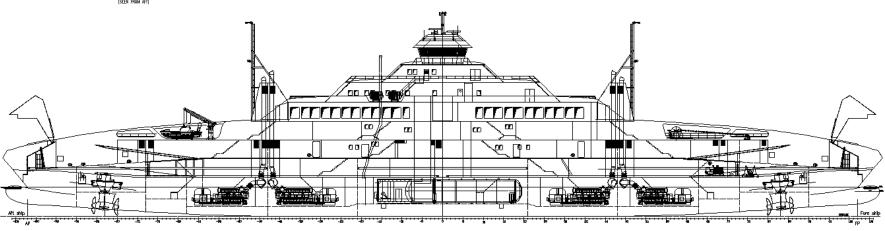


Ref.: Linde Cryo

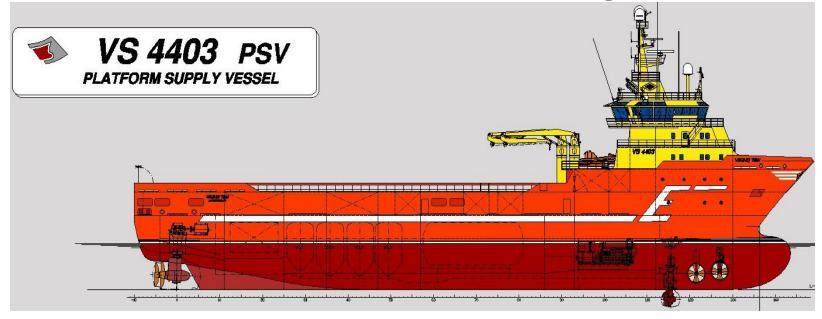


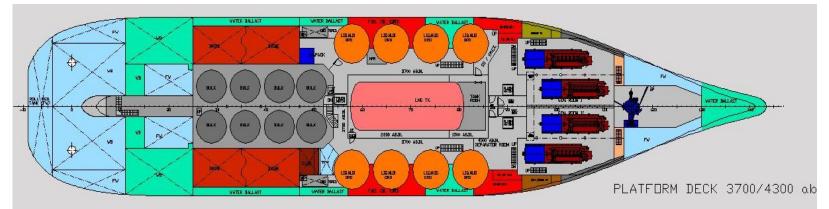
LNG storage vacuum isolated pressure tank

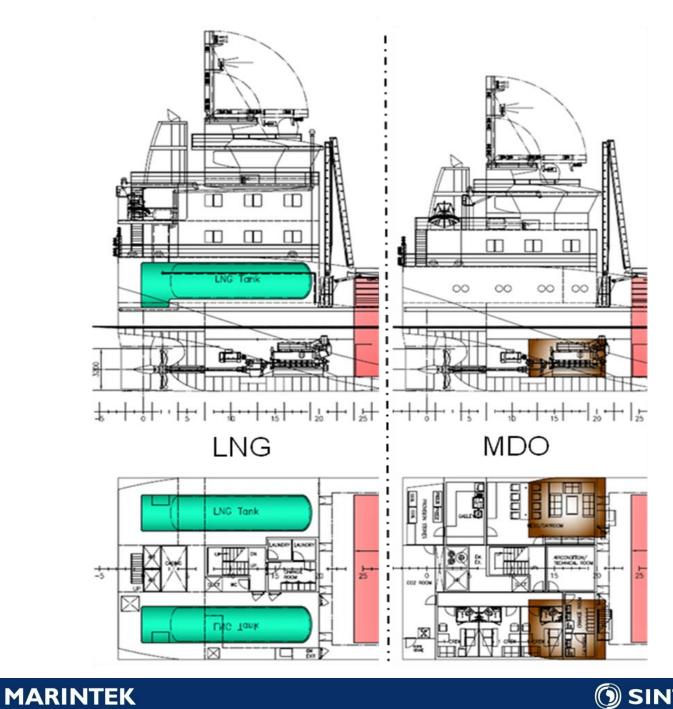
Outer tank as secondary barrier (low temperature material) Integrated cold box extension of the outer tank



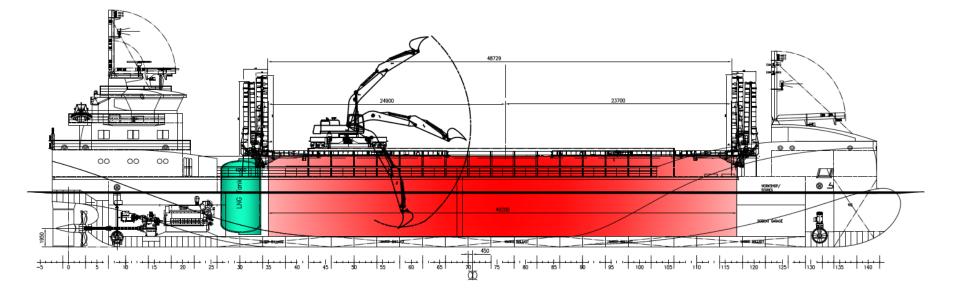
LNG ferry Bergensfjord

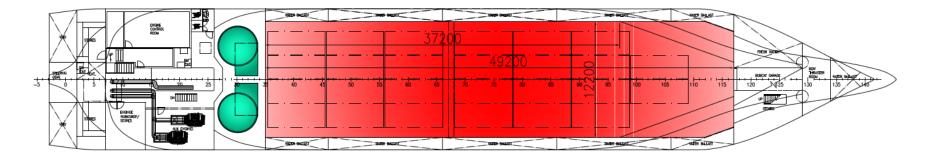

Main dimensions and capacities:


Overall length	130 m
Breath	19 m
Draught max	4, 6 m
Cars (pcu)	212
Passengers	590
Service speed	21 knots
LNG storage: 2	x 125 m ³ LNG


Engines and LNG tank arrangement

4 Generator sets: Wärtsilä 6x32 DF, LNG storage 240 m³





Nyfrakt - Bulk 90 m LNG arrangement

Presentation outline

Background

- Environmental challenges and emission restrictions at sea
- Need for alternative fuels (to replace HFO)
- Natural Gas fueled marine engines
- LNG as a solution to environmental challenges in shipping
- Propulsion systems and onboard LNG fuel systems
- Safety rules and regulations
- Bunkering fuel supply infrastructure
- R&D Challenges

MARINTEK

Summary and conclusions

Rules and regulations - Gas fuelled ships

Latest IMO Interim guidelines for gas fuelled ships - 2009 Allows for different engine room arrangements:

ESD (Emergency Shut Down) protected engine room

- Minimum two separate engine rooms
- Redundant systems
- Increased ventilation
- Gas detection
- Minimum of ignition sources

Inherently safe engine room

- Ventilated double piping to engine
- No other special requirements for the engine room

New IMO code in progress:

MARINTEK

International code for gas fuelled ships – IGF - 2014

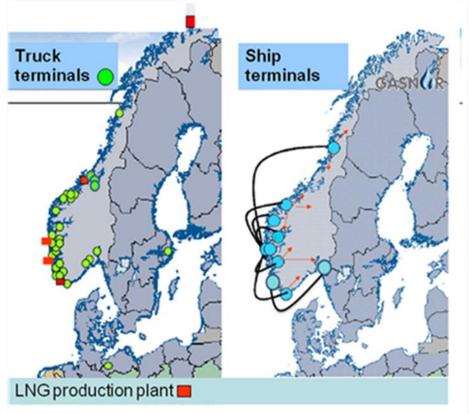
Capital cost related to LNG fuel

MARINTEK

. . .

			Big LNG
Additional cost factor	Car ferry (5 MW/ 250m ³ LNG)	Platform supply vessel (PSV) (8 MW / 200 m ³ LNG)	Ro-Ro (5 MW / 450m ³ LNG)
Engines	~3%	~3%	~2%
Fuel system	~4-5%	~2-3%	~5-8%
Arrangement and structure	~2-3%	~3-6%	~2-5%
Total	~10%	~8-12%	~9-15%

Presentation outline


- Background
 - Environmental challenges and emission restrictions at sea
 - Need for alternative fuels (to replace HFO)
- Natural Gas fueled marine engines
- LNG as a solution to environmental challenges in shipping
- Propulsion systems and onboard LNG fuel systems
- Safety rules and regulations
- Bunkering fuel supply infrastructure
- R&D Challenges

MARINTEK

Summary and conclusions

LNG in short sea shipping in Norway today

Source: Gasnor

MARINTEK

Covering the long coast of Norway

LNG source

- Base load LNG supplied to receiving terminals
- 4 Small scale LNG production plants10'-300' ton / year
- Total capacity 450' t/year
- LNG distribution
 - Coastal tankers
 - Trucks
- Regional terminals
 - ~40 terminals in operation
 - 100m³ 6500m³ LNG storage capacity

R&D challenges

Engines and systems

- Part load efficiency optimization
- Methane slip reduction
- Fuel gas quality
- Cost reduction

Fuel handling and storage

- Better storage tank solutions (space and cost)
- Improved fuel handling systems bunkering logistics
- Simpler and more robust fuel system design without reducing safety (space and cost)

Commercial challenge:

Cost elements – need more actors in the market...

Oppsummering og konklusjon

- LNG antas å være det mest lovende alternative maritime drivstoff
- Skadelige utslipp til luft reduseres drastisk, møter nye IMO-krav
- LNG tilgjengelighet bedret og under forbedring
- Tilgjengelig teknologi for medium speed, 2 takter saktegående teknologi under utvikling
- Energieffektivitet lik eller bedre sammenlignet med MDO/HFO
- Metan en utfordring
- Fortsatt behov for bedring av:
 - tilgjengelighet av LNG,
 - lagring om bord og

- Iastesystemer mht kostnader og plassbehov
- Betydelig økte investeringskostnader (typisk 8-15%) som må rettferdiggjøres gjennom reduserte utslipp og driftskostnader

Aktuelt for fiskeflåten?

Tilgjengelig teknologi

- Kostnader avgjørende, men må sammenlignes med løsninger med tilsvarende ytelse i forhold til regelkrav (Svovel/NOx)
- Mest aktuelt for flåtegrupper med mange driftsdøgn og relativt høyt energiforbruk
- Dual fuel gir større fleksibilitet i forhold til valg av drivstoff
- Valg avhengig av driftsprofil og tilgjengelighet av gass

